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Presenter
Presentation Notes
To address this problem, we need to know the characteristics of each component in the signal. 
When High frequency ultrasound pulses are transmitted into a material 
they will be reflected by flaws if there is any. 
But at the same time, grain boundaries within the material also cause reflection, most likely in Rayleigh scattering region.
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Presenter
Presentation Notes
If we use xi and si to represent the convolution terms, we have a much simpler model like this.
Put them together, we have a expression like this.
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Presentation Notes
*** Based on the analyzed signal 
By using some suitable method, we can ***
After obtaining the coefficients, we need to *** because C contains both the coefficients for flaws and grain noise.
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Presenter
Presentation Notes
For dic design, Gabor model is used. 
This model can approximate ultrasonic signal very well, as we can see in this figure. 
For this model, we have three parameters to design. 


= Bt

RS . BOEIEM m MRS w1 = 1,2, ..., m, ENTHL:

fi

(UiZZTL'fi

Amplitude

// \J)\l\ /\/\/\

/

_/ D

Frequency



Presenter
Presentation Notes
By doing this, we can have more parameters for the higher power part of the signal, thus we can represent the signal more effectively.
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Presenter
Presentation Notes
If the estimated range is s1 and s2, then we extend this ranger further to 0.5s1 to 1.5s2 to account for both flaw signal and noise.
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Presenter
Presentation Notes
DELTA = 1 means sample by sample analysis.
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Presentation Notes
Particularlly, when DELTA is equal to 1, then p=N, and so, L is m*n times larger than N. 
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Presentation Notes
Particularlly, when DELTA is equal to 1, then p=N, and so, L is m*n times larger than N. 
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(a). ULHCIE BE(Matching Pursuit)
(b). Z£1E ¥ (Basis Pursuit) 241, —norm

(c). Ml Ul 152 3] (Sparse Bayesian Learning) %A1, —norm

(d). AR IE AL LI (1 —norm regularization, 0<p<1)
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Presentation Notes
This kind of equation can be solved by adding sparseness constrains on C. 
In this study, we can see that C is sparse indeed.
There are mainly three class of solutions.
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Presentation Notes
This kind of equation can be solved by adding sparseness constrains on C. 
In this study, we can see that C is sparse indeed.
There are mainly three class of solutions.
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Presentation Notes
Although this algorithm is Easy to implement, computationally efficient. 
Studies show that MP doesn’t work well for signals with low SNR.  
AND because this is a greedy algorithm, it suffers from Local optima.
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Although this algorithm is Easy to implement, computationally efficient. 
Studies show that MP doesn’t work well for signals with low SNR.  
AND because this is a greedy algorithm, it suffers from Local optima.
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* Rao B D, Engan K, Cotter S F, et al. Subset selection in noise based on diversity measure minimization.
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Although this algorithm is Easy to implement, computationally efficient. 
Studies show that MP doesn’t work well for signals with low SNR.  
AND because this is a greedy algorithm, it suffers from Local optima.
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Presentation Notes
By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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Presentation Notes
By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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Presentation Notes
By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise


=
FRBEa 1R 71l /Mg A=

Case 2: & HEFHIE 5 0irds R

100 .
90 - —©S—1p (p=0.95)
—&—O0MP

80 | —A—BP

70 [
60
50
40 +
30 |

POD (%)

2 -1 0

LSNR (dB)

> 1, (p=0.95) B th F EXILALBEROMP), 1T HIBERBP)F%.


Presenter
Presentation Notes
By RSBL algorithm, we can obtain the coefficients vector c
But because c contains coefficients for both flaw signal and noise
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